

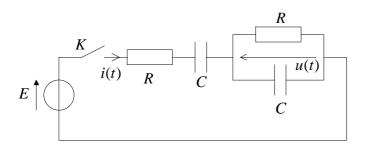
EXERCICE D'ORAL

ELECTROCINETIQUE

-EXERCICE 3.4-

• ENONCE :

« Circuit (RC série) en série avec un circuit (RC parallèle) »



Les condensateurs sont initialement déchargés, et le courant i(t) est nul.

A t=0, on ferme l'interrupteur K.

<u>Question</u>: pour $t \ge 0$, déterminer la fonction u(t) et tracer la courbe correspondante.

 ${\bf Rq}: \quad {\rm on \ d\'eterminera \ la \ phase} \quad \omega_0 t_0 \quad {\rm pour \ laquelle} \quad u(t) \quad {\rm est \ maximum, \ avec} \quad \omega_0 = \frac{1}{RC} \ ; \quad {\rm on \ calculera \ \'egalement \ le \ rapport} \quad \frac{u_{\rm max}}{E} \ .$

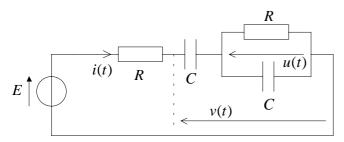
ELECTROCINETIQUE

EXERCICE D'ORAL

• CORRIGE :

«Circuit (RC série) en série avec un circuit (RC parallèle »

• Introduisons une tension intermédiaire v(t):



On a les équations suivantes:

$$i(t) = \frac{E - v(t)}{R} = C \frac{d[v(t) - u(t)]}{dt}$$
 (1)

$$\frac{E - v(t)}{R} = \frac{u(t)}{R} + C\frac{du(t)}{dt}$$
 (2)

• La relation (2) fournit : $v(t) = E - u(t) - RC \frac{du(t)}{dt}$; la (1) donne : $v(t) + RC \frac{dv(t)}{dt} = E + RC \frac{du(t)}{dt}$

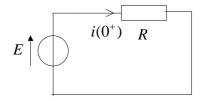
$$\Rightarrow E + RC\frac{du(t)}{dt} = E - u(t) - RC\frac{du(t)}{dt} + RC\left(\frac{dE}{dt} - \frac{du(t)}{dt} - RC\frac{d^2u(t)}{dt^2}\right) \Rightarrow$$

$$\frac{d^2u(t)}{dt^2} + 3\omega_0 \times \frac{du(t)}{dt} + \omega_0^2 \times u(t) = 0$$
avec: $\omega_0 = \frac{1}{RC}$

• Le discriminant du polynôme caractéristique vaut : $\Delta = 9\omega_0^2 - 4\omega_0^2 = 5\omega_0^2 \Rightarrow$ les racines de ce polynôme sont : $r = -\frac{3\omega_0}{2} \pm \frac{\sqrt{5}\omega_0}{2}$; on en déduit la forme de la solution **apériodique** :

$$u(t) = \exp\left(-\frac{3\omega_0}{2} \times t\right) \times \left[A \exp\left(\frac{\sqrt{5}\omega_0}{2} \times t\right) + B \exp\left(-\frac{\sqrt{5}\omega_0}{2} \times t\right)\right]$$
(3)

• La tension aux bornes d'un condensateur étant continue, on a : $u(0^-) = u(0^-) = 0 \Rightarrow A + B = 0$ En remarquant que les tensions $u(0^+)$ et $v(0^+)$ sont nulles, le circuit se ramène alors à :



On trouve donc:

$$i(0^+) = C \frac{du(0^+)}{dt} = \frac{E}{R}$$

 \mathbf{Rq} : c'est bien le courant $i(0^+)$ qui traverse intégralement le condensateur, qui se comporte comme un fil en parallèle sur la résistance R.

EXERCICE D' ORAL

ELECTROCINETIQUE

• En dérivant la relation (3), en multipliant par C et en faisant t=0, il vient : A=-B=

$$A = -B = \frac{E}{\sqrt{5}}$$

d'où :

$$u(t) = \frac{2E}{\sqrt{5}} \times \exp\left(-\frac{3\omega_0}{2} \times t\right) \times \sinh\left(\frac{\sqrt{5}\omega_0}{2} \times t\right)$$

• La courbe a l'allure suivante :



Le maximum de u(t) est donné par:

$$\frac{du(t)}{dt} = 0 \implies \boxed{\omega_0 t_0 = \frac{2}{\sqrt{5}} \arg th(\sqrt{5}/3) \approx 0.86}$$

On en déduit:

$$\frac{u(t_0)}{E} \simeq 0,27$$